Delta Conjecture and affine Springer fibers

Eugene Gorsky University of California, Davis joint with Maria Gillespie and Sean Griffin arXiv:2408.12543 $+$ in progress

> CART seminar September 11, 2024

> > $1/20$

Outline

Choose two numbers $k \le n$, define $K = k(n - k + 1)$. In this talk, I will explain various ingredients in the following table:

The row (1) presents a symmetric function of degree K which is related to Compositional Rational Shuffle Conjecture. This symmetric function also appears as a character of the S_K action in the Borel-Moore homology of some space $Y_{n,k}$.

Similarly, the row (2) presents a symmetric function of degree *n* which is related to **Delta Conjecture**, and the homology of another space $X_{n,k}$.

 $A \equiv A + B$ $A \equiv A + B$ $A \equiv A + B$ se[m](#page-2-0)[in](#page-3-0)ar B

Theorem (Gillespie-G.-Griffin)

All symmetric functions in row (1) agree. All symmetric functions in row (2) agree.

Theorem (Gillespie-G.-Griffin)

We have $s^{\perp}_{\lambda}(1) = (2)$ where $\lambda = (k-1)^{n-k}$ is the rectangular Young diagram, and s^{\perp}_λ is adjoint to multiplication by s_λ with respect to the Hall inner product.

Note that the operator s^{\perp}_{λ} decreases the degree by $(k-1)(n-k) = K - n$.

[Shuffle Conjecture](#page-3-0)

The case $k = n$ of the table corresponds to the celebrated **Shuffle** Conjecture proposed by Haiman, Haglund, Loehr, Remmel and Ulyanov, and first proved by Carlsson and Mellit.

On the **algebraic side** we have the symmetric function ∇e_n where e_n is the elementary symmetric function and ∇ is the operator which diagonalizes in the basis of modified Macdonald polynomials:

$$
\nabla \widetilde{H}_{\lambda} = q^{n(\lambda)} t^{n(\lambda')} \widetilde{H}_{\lambda}.
$$

Here $q^{n(\lambda)}t^{n(\lambda')}$ is the product of (q,t) -contents of boxes in the diagram of λ . For example, $\nabla \widetilde{H}_{3,2} = q^4 t^2 \widetilde{H}_{3,2}$.

[Shuffle Conjecture](#page-3-0)

On the combinatorial side we consider Dyck paths in the $n \times n$ square that stay weakly above the northeast diagonal in the grid. A word parking function is a labeling of the vertical runs of the Dyck path by positive integers such that the labeling strictly increases up each vertical run (but letters may repeat between columns; hence "word" parking function). We let $WPF_{n,n}$ be the set of word parking functions.

Later we will consider word parking functions in arbitrary rectangles, see right picture. [CA](#page-4-0)[R](#page-5-0)[T](#page-2-0) [se](#page-3-0)[m](#page-5-0)[in](#page-6-0)[ar](#page-2-0) [S](#page-3-0)[e](#page-5-0)[pte](#page-6-0)[mb](#page-0-0)[er 11](#page-19-0), 2024 ਵਿੱਚ ਸੰਗਤ ਸੀ। ਇਸ ਵਿੱਚ ਸੰਗਤ ਸੀ। 2024 ਵਿੱਚ ਸੰਗਤ ਸੀ। 2024 ਵਿੱਚ ਸੰਗਤ

[Shuffle Conjecture](#page-3-0)

Theorem (Shuffle Conjecture, Carlsson-Mellit)

We have

$$
\nabla e_n = \sum_{P\in \mathrm{WPF}_{n,n}} t^{\mathrm{area}(P)} q^{\mathrm{dinv}(P)} x^P,
$$

where area and dinv are certain statistics on word parking functions.

Theorem (Hikita, G.-Mazin-Vazirani)

There is an algebraic variety X_n with an action of S_n in the (Borel-Moore) homology of X_n such that:

a) X_n has an affine paving with cells in bijection with parking functions. The dimension of the cell equals dinv of the parking function. b) The Frobenius character of $H_*(X_n)$ equals ∇e_n .

 X_n is an example of **affine Springer fiber**, to be defined later in the talk.

[Rational Shuffle Conjecture](#page-6-0)

We will need a generalization of the Shuffle Theorem known as the Compositional Rational Shuffle Theorem, conjectured by Bergeron-Garsia-Leven-Xin and proved by Mellit. To state it, we need to recall some constructions related to the **Elliptic Hall Algebra** $\mathcal{E}_{q,t}.$ The algebra $\mathcal{E}_{q,t}$ has generators $P_{a,b}, (a,b)\in\mathbb{Z}^2$ satisfying certain complicated relations. We will not need these relations but record some useful properties:

- (a) If $(a', b') = (ca, cb) \in \mathbb{Z}^2$ for some rational constant $c > 0$, then $[P_{a,b}, P_{a',b'}] = 0.$
- (b) A certain extension of the group $SL(2, \mathbb{Z})$ acts on $\mathcal{E}_{q,t}$ by algebra automorphisms. If $M \in SL(2, \mathbb{Z})$ then the corresponding automorphism sends the generator $P_{a,b}$ to $P_{M(a,b)}$, up to a certain monomial in q, t .
- (c) The algebra $\mathcal{E}_{q,t}$ acts on $\Lambda(q,t)$. The operator $P_{a,b}$ has degree a, that is, deg $P_{a,b}(f)$ = deg f + a. The operators $P_{a,0}$ act on $\Lambda(q,t)$ by multipli[c](#page-6-0)ation by power sums p_a (up to a s[cal](#page-5-0)[ar](#page-7-0) [fa](#page-5-0)ctor).

[Rational Shuffle Conjecture](#page-6-0)

The generators $P_{3,0}$ and $P_{1,2}$ of the Elliptic Hall Algebra:

Suppose gcd(a, b) = 1. Since $P_{ia,ib}$ pairwise commute for $i > 0$, the algebra $\mathcal{E}_{q,t}$ has a large commutative subalgebra of slope b/a .

Given a symmetric function $F \in \Lambda(q,t)$, we can transform it to an operator $F_{b/a}$ in $\mathcal{E}_{q,t}$ as follows: first expand F in power sums p_i , then replace each p_i by $P_{ia,ib}$ \in $\mathcal{E}_{q,t}.$ Alternatively, we can find M \in $\mathrm{SL}(2,\mathbb{Z})$ such that $M(1,0) = (a, b)$, then the corresponding automorphism of $\mathcal{E}_{a,t}$ sends F (thought of as a multiplication operator and hence an element of $\mathcal{E}_{q,t}$ of slope zero) to $F_{b/a}$.

Suppose gcd(a, b) = d. We define the operator $E_{a,b} \in \mathcal{E}_{a,t}$ as the result of rotation of the elementary symmetric function e_d to slope b/a as above.

[CA](#page-8-0)[R](#page-9-0)[T](#page-5-0) [se](#page-6-0)[m](#page-9-0)[in](#page-10-0)[ar](#page-5-0) [S](#page-6-0)[e](#page-9-0)[pte](#page-10-0)[mb](#page-0-0)[er 11](#page-19-0), 2024

On the combinatorial side of the Compositional Rational Shuffle Conjecture we have the sum over rational parking functions in the $a \times b$ rectangle:

Theorem (Mellit) $E_{a,b} \cdot 1 = \sum$ $P \in \text{WPF}_{a,b}$ $q^{\text{area}(P)} t^{\text{dinv}(P)} x^P.$

Example

For $a = b = n$ one can check that $E_{a,b} \cdot 1 = \nabla e_n$, and we recover Shuffle Theorem.

If gcd(a, b) > 1, Mellit proved a more general result where the touch points of the Dyck path and the diagonal are specified. We will not need it.

 \blacktriangleright \blacktriangleright \blacktriangleright 4 \equiv \blacktriangleright 4 \equiv 5 \blacktriangleright 9 \bowtie \curvearrowright \curvearrowright \curvearrowright

Next, we discuss **Delta Conjecture**, proposed by Haglund, Remmel and Wilson, and recently proved by Blasiak-Haiman-Morse-Pun-Seelinger, and D'Adderio-Mellit.

On the algebraic side we have the symmetric function $\Delta'_{e_{k-1}} e_n$ where $\Delta'_{e_{k-1}}$ is the operator on $\Lambda(q,t)$ which is diagonal in the modified Macdonald basis H_{λ} with eigenvalues

$$
\Delta'_{e_{k-1}}\widetilde{H}_{\lambda}=e_{k-1}[B'_{\lambda}]\widetilde{H}_{\lambda},\quad B'_{\lambda}=\sum_{\Box\in\lambda,\,\Box\neq(0,0)}q^{a'(\Box)}t^{\ell'(\Box)}.
$$

[Delta Conjecture](#page-10-0)

On the combinatorial side we have stacked parking functions. A stack S of boxes in an $n \times k$ grid is a subset of the grid boxes such that there is one element of S in each row, at least one in each column, and each box in S is weakly to the right of the one below it.

A (word) stacked parking function with respect to S is a labeled up-right path D such that each box of S lies below D , and the labeling is strictly increasing up each column.

[Delta Conjecture](#page-10-0)

Theorem (Delta Conjecture)

$$
\Delta'_{e_{k-1}}e_n=\sum_{P\in\mathcal{LD}_{n,k}^{\mathrm{stack}}}q^{\mathrm{area}(P)}t^{\mathrm{hdimv}(P)}x^P.
$$

Theorem (Gillespie-G.-Griffin)

Letting
$$
K = k(n - k + 1)
$$
 and $\lambda = (k - 1)^{n-k}$, we have

$$
\Delta'_{e_{k-1}}e_n = s_\lambda^{\perp}(E_{K,k} \cdot 1), \qquad (1)
$$

where s^{\perp}_λ is the adjoint to multiplication by the Schur function $s_\lambda.$

We give two proofs of thsi theorem, by applying s^\perp_λ both to the combinatorial and algebraic sides of the Compositional Rational Shuffle Theorem for (K, k) . As a consequence, we obtain a new proof of Delta Conjecture.

Next, we switch to geometry. Recall that the complete flag variety in $\mathbb{C}^{\mathcal{K}}$ is defined as the space of flags

$$
\{0 = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_K = \mathbb{C}^K : \dim V_i = i\}.
$$

Let γ be a nilpotent operator on \mathbb{C}^K with Jordan type $\mu.$ The $\mathsf{Springer}$ **fiber** Z_γ is defined as the space of flags such that γV_i \subset V_i for all $i.$

Theorem (Hotta-Springer)

There is an S_K action in the (Borel-Moore) homology of Z_γ . Its Frobenius character equals the Hall-Littlewood polynomial $H_u(x; q)$.

We can also consider the partial flag variety:

$$
\{V_{\bullet}: 0=V_0\subset V_1\subset V_2\subset \ldots V_n\subset V_K=\mathbb{C}^K:\dim V_i=i\}.
$$

Given γ as above, we can consider the " Δ -Springer variety" (defined by Griffin-Levinson-Woo):

$$
W_{\mu,k,n} = \{ V_{\bullet} : \gamma V_i \subset V_i, \mathrm{JT}\left(\gamma|_{V_K/V_n}\right) \leq (n-k)^{k-1} \}.
$$

Theorem (Gillespie-Griffin)

There is an S_n action in in the (Borel-Moore) homology of $W_{\mu,k,n}$. Under some assumption on μ , the Frobenius character of this action equals $s_\lambda^\perp H_\mu(x;q)$, where $\lambda = (n-k)^{k-1}$ as above.

We generalize the above results to the affine flag variety. We will work with the ring of power series $\mathbb{C}[\lceil \epsilon \rceil]$ and the field of Laurent series $\mathbb{C}((\epsilon)).$

A lattice $\Lambda\in \mathbb{C}^{\mathcal{K}}((\epsilon))$ is a free $\mathbb{C}[[\epsilon]]$ -submodule of rank $\mathcal{K}.$ The $\mathop{\mathsf{affine}}$ flag variety is the space of flags of lattices:

$$
\{\Lambda_{\bullet} : \Lambda_1 \supset \Lambda_2 \supset \cdots \supset \Lambda_K \supset \epsilon \Lambda_1.\}
$$

The affine flag variety is the union of affine Schubert cells labeled by the affine permutations in $\widetilde{S_K}$.

Given $\gamma\in {\rm GL}_{\boldsymbol{\mathcal{K}}}((\epsilon))$, the **affine Springer fiber** ${\rm Sp}_\gamma$ is defined as the space of flags of lattices as above such that $\gamma\Lambda_i$ \subset $\Lambda_i.$

[CA](#page-15-0)[R](#page-16-0)[T](#page-14-0) [se](#page-15-0)[min](#page-19-0)[ar](#page-14-0) [S](#page-15-0)[epte](#page-19-0)[mb](#page-0-0)[er 11](#page-19-0), 2024

We define the space $Y_{n,k} = Sp_{\gamma} \cap C$ where γ is a certain explicit operator (depending on n, k) and C is the union of certain affine Schubert cells,

Theorem (Gillespie-G.-Griffin)

a) The space $Y_{n,k}$ has an affine cell decomposition with cells in bijection with (K, k) rational parking functions.

b) The dimension of the cell is equal (up to a constant) to the dinv statistic of the parking function.

c) There is an S_K action in the Borel-Moore homology of $Y_{n,k}$, and the corresponding Frobenius character equals $E_{K,k} \cdot 1$.

For experts, the main difficulty here (and the reason to introduce C) is that K and k are not coprime (in fact, k divides K).

[CA](#page-16-0)[R](#page-17-0)[T](#page-14-0) [se](#page-15-0)[min](#page-19-0)[ar](#page-14-0) [S](#page-15-0)[epte](#page-19-0)[mb](#page-0-0)[er 11](#page-19-0), 2024

Finally, we define the "affine Borho-Macpherson space" $BM_{n,k}$ as the space of partial flags of lattices

$$
\{\Lambda_{\bullet} : \Lambda_1 \supset \Lambda_2 \supset \cdots \Lambda_n \supset \Lambda_K \supset \epsilon \Lambda_1.\}
$$

such that $\gamma \Lambda_i \subset \Lambda_i$ and $J\Gamma\left(\gamma|\Lambda_n/\Lambda_K\right) \le (n-k)^{k-1}$. We define $X_{n,k}$ = $BM_{n,k} \cap C'$ where C' is another union of affine Schubert cells.

Theorem (Gillespie-G.-Griffin)

There is an S_n action in the Borel-Moore homology of $X_{n,k}$, and the $\mathsf{corresponding}$ Frobenius character equals $\Delta'_{e_{k-1}}$ e $_{n}$.

Appendix: from (K, k) parking functions to stacked parking functions

Here $n = 5$, $k = 3$, so $K = k(n - k + 1) = 9$. We split the labels into "big" $(> n)$ and "small" $(≤ n)$. Erase the big labels, the result is a labeled path in $k \times n$ rectangle. The stack remembers how many boxes we erased in each column. [CA](#page-18-0)[R](#page-19-0)[T](#page-14-0) [se](#page-15-0)[min](#page-19-0)[ar](#page-14-0) [S](#page-15-0)[epte](#page-19-0)[mb](#page-0-0)[er 11](#page-19-0), 2024 and September 11, 2024 and September 11, 2024 and September 11, 2024

Thank You!

[CAR](#page-19-0)[T](#page-14-0) [se](#page-15-0)[min](#page-19-0)[ar](#page-14-0) [S](#page-15-0)[epte](#page-19-0)[mb](#page-0-0)[er 11](#page-19-0), 2024

 $20/20$