Delta Conjecture and affine Springer fibers

Eugene Gorsky University of California, Davis joint with Maria Gillespie and Sean Griffin arXiv:2408.12543 + in progress

> CART seminar September 11, 2024

Outline

Choose two numbers $k \le n$, define K = k(n - k + 1). In this talk, I will explain various ingredients in the following table:

	Degree	Algebra	Combinatorics	Geometry	Module
(1)	K	$E_{K,k} \cdot 1$	$\mathrm{PF}_{\mathcal{K},k}$	$Y_{n,k}$	$H^{BM}_*(Y_{n,k}) \circlearrowleft S_K$
(2)	n	$\Delta'_{e_{k-1}}e_n$	$\mathcal{LD}^{ ext{stack}}_{n,k}$	X _{n,k}	$H^{BM}_*(X_{n,k}) \circlearrowleft S_n$

The row (1) presents a symmetric function of degree K which is related to **Compositional Rational Shuffle Conjecture**. This symmetric function also appears as a character of the S_K action in the Borel-Moore homology of some space $Y_{n,k}$.

Similarly, the row (2) presents a symmetric function of degree *n* which is related to **Delta Conjecture**, and the homology of another space $X_{n,k}$.

KABKABK

Theorem (Gillespie-G.-Griffin)

All symmetric functions in row (1) agree. All symmetric functions in row (2) agree.

Theorem (Gillespie-G.-Griffin)

We have $s_{\lambda}^{\perp}(1) = (2)$ where $\lambda = (k-1)^{n-k}$ is the rectangular Young diagram, and s_{λ}^{\perp} is adjoint to multiplication by s_{λ} with respect to the Hall inner product.

Note that the operator s_{λ}^{\perp} decreases the degree by (k-1)(n-k) = K - n.

• • = • • = •

Shuffle Conjecture

The case k = n of the table corresponds to the celebrated **Shuffle Conjecture** proposed by Haiman, Haglund, Loehr, Remmel and Ulyanov, and first proved by Carlsson and Mellit.

On the **algebraic side** we have the symmetric function ∇e_n where e_n is the elementary symmetric function and ∇ is the operator which diagonalizes in the basis of **modified Macdonald polynomials**:

$$\nabla \widetilde{H}_{\lambda} = q^{n(\lambda)} t^{n(\lambda')} \widetilde{H}_{\lambda}.$$

Here $q^{n(\lambda)}t^{n(\lambda')}$ is the product of (q, t)-contents of boxes in the diagram of λ . For example, $\nabla \widetilde{H}_{3,2} = q^4 t^2 \widetilde{H}_{3,2}$.

t	qt	
1	q	q^2

Shuffle Conjecture

On the combinatorial side we consider Dyck paths in the $n \times n$ square that stay weakly above the northeast diagonal in the grid. A **word parking function** is a labeling of the vertical runs of the Dyck path by positive integers such that the labeling strictly increases up each vertical run (but letters may repeat between columns; hence "word" parking function). We let WPF_{*n*,*n*} be the set of word parking functions.

Later we will consider word parking functions in arbitrary rectangles, see right picture.

Shuffle Conjecture

Theorem (Shuffle Conjecture, Carlsson-Mellit)

We have

$$\nabla e_n = \sum_{P \in \mathrm{WPF}_{n,n}} t^{\mathrm{area}(P)} q^{\mathrm{dinv}(P)} x^P,$$

where area and dinv are certain statistics on word parking functions.

Theorem (Hikita, G.-Mazin-Vazirani)

There is an algebraic variety X_n with an action of S_n in the (Borel-Moore) homology of X_n such that:

a) X_n has an affine paving with cells in bijection with parking functions. The dimension of the cell equals dinv of the parking function. b) The Frobenius character of $H_*(X_n)$ equals ∇e_n .

 X_n is an example of affine Springer fiber, to be defined later in the talk.

Rational Shuffle Conjecture

We will need a generalization of the Shuffle Theorem known as the **Compositional Rational Shuffle Theorem**, conjectured by Bergeron-Garsia-Leven-Xin and proved by Mellit. To state it, we need to recall some constructions related to the **Elliptic Hall Algebra** $\mathcal{E}_{q,t}$. The algebra $\mathcal{E}_{q,t}$ has generators $P_{a,b}$, $(a, b) \in \mathbb{Z}^2$ satisfying certain complicated relations. We will not need these relations but record some useful properties:

- (a) If $(a', b') = (ca, cb) \in \mathbb{Z}^2$ for some rational constant c > 0, then $[P_{a,b}, P_{a',b'}] = 0$.
- (b) A certain extension of the group $SL(2,\mathbb{Z})$ acts on $\mathcal{E}_{q,t}$ by algebra automorphisms. If $M \in SL(2,\mathbb{Z})$ then the corresponding automorphism sends the generator $P_{a,b}$ to $P_{M(a,b)}$, up to a certain monomial in q, t.
- (c) The algebra $\mathcal{E}_{q,t}$ acts on $\Lambda(q,t)$. The operator $P_{a,b}$ has degree a, that is, deg $P_{a,b}(f) = \deg f + a$. The operators $P_{a,0}$ act on $\Lambda(q,t)$ by multiplication by power sums p_a (up to a scalar factor).

Rational Shuffle Conjecture

The generators $P_{3,0}$ and $P_{1,2}$ of the Elliptic Hall Algebra:

8/20

Suppose gcd(a, b) = 1. Since $P_{ia,ib}$ pairwise commute for i > 0, the algebra $\mathcal{E}_{a,t}$ has a large commutative subalgebra of slope b/a.

Given a symmetric function $F \in \Lambda(q, t)$, we can transform it to an operator $F_{b/a}$ in $\mathcal{E}_{q,t}$ as follows: first expand F in power sums p_i , then replace each p_i by $P_{ia,ib} \in \mathcal{E}_{q,t}$. Alternatively, we can find $M \in \mathrm{SL}(2,\mathbb{Z})$ such that M(1,0) = (a,b), then the corresponding automorphism of $\mathcal{E}_{q,t}$ sends F (thought of as a multiplication operator and hence an element of $\mathcal{E}_{q,t}$ of slope zero) to $F_{b/a}$.

Suppose gcd(a, b) = d. We define the operator $E_{a,b} \in \mathcal{E}_{q,t}$ as the result of rotation of the elementary symmetric function e_d to slope b/a as above.

|▲ 伊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ | ヨ | の Q @

On the combinatorial side of the Compositional Rational Shuffle Conjecture we have the sum over rational parking functions in the $a \times b$ rectangle:

Theorem (Mellit)

$$E_{a,b} \cdot 1 = \sum_{P \in \mathrm{WPF}_{a,b}} q^{\mathrm{area}(P)} t^{\mathrm{dinv}(P)} x^{P}.$$

Example

For a = b = n one can check that $E_{a,b} \cdot 1 = \nabla e_n$, and we recover Shuffle Theorem.

If gcd(a, b) > 1, Mellit proved a more general result where the touch points of the Dyck path and the diagonal are specified. We will not need it.

Next, we discuss **Delta Conjecture**, proposed by Haglund, Remmel and Wilson, and recently proved by Blasiak-Haiman-Morse-Pun-Seelinger, and D'Adderio-Mellit.

On the algebraic side we have the symmetric function $\Delta'_{e_{k-1}}e_n$ where $\Delta'_{e_{k-1}}$ is the operator on $\Lambda(q,t)$ which is diagonal in the modified Macdonald basis \widetilde{H}_{λ} with eigenvalues

$$\Delta'_{e_{k-1}}\widetilde{H}_{\lambda} = e_{k-1}[B'_{\lambda}]\widetilde{H}_{\lambda}, \quad B'_{\lambda} = \sum_{\Box \in \lambda, \, \Box \neq (0,0)} q^{a'(\Box)} t^{\ell'(\Box)}.$$

• • = • • = • =

Delta Conjecture

On the combinatorial side we have **stacked parking functions**. A **stack** S of boxes in an $n \times k$ grid is a subset of the grid boxes such that there is one element of S in each row, at least one in each column, and each box in S is weakly to the right of the one below it.

A (word) stacked parking function with respect to S is a labeled up-right path D such that each box of S lies below D, and the labeling is strictly increasing up each column.

Delta Conjecture

Theorem (Delta Conjecture)

$$\Delta'_{e_{k-1}} e_n = \sum_{P \in \mathcal{LD}_{n,k}^{\mathrm{stack}}} q^{\mathrm{area}(P)} t^{\mathrm{hdinv}(P)} x^P.$$

Theorem (Gillespie-G.-Griffin)

Letting
$$K = k(n-k+1)$$
 and $\lambda = (k-1)^{n-k}$, we have

$$\Delta'_{e_{k-1}}e_n = s_{\lambda}^{\perp}(E_{\mathcal{K},k}\cdot 1), \tag{1}$$

where s_{λ}^{\perp} is the adjoint to multiplication by the Schur function s_{λ} .

We give two proofs of this theorem, by applying s_{λ}^{\perp} both to the combinatorial and algebraic sides of the Compositional Rational Shuffle Theorem for (K, k). As a consequence, we obtain a new proof of Delta Conjecture.

Next, we switch to geometry. Recall that the complete flag variety in \mathbb{C}^K is defined as the space of flags

$$\{0 = V_0 \subset V_1 \subset V_2 \subset \ldots \subset V_K = \mathbb{C}^K : \dim V_i = i\}.$$

Let γ be a nilpotent operator on $\mathbb{C}^{\mathcal{K}}$ with Jordan type μ . The **Springer** fiber Z_{γ} is defined as the space of flags such that $\gamma V_i \subset V_i$ for all *i*.

Theorem (Hotta-Springer)

There is an S_K action in the (Borel-Moore) homology of Z_{γ} . Its Frobenius character equals the Hall-Littlewood polynomial $H_{\mu}(x;q)$.

• • = • • = •

We can also consider the partial flag variety:

$$\{V_{\bullet}: 0 = V_0 \subset V_1 \subset V_2 \subset \ldots V_n \subset V_K = \mathbb{C}^K : \dim V_i = i\}.$$

Given γ as above, we can consider the " Δ -Springer variety" (defined by Griffin-Levinson-Woo):

$$W_{\mu,k,n} = \{V_{\bullet} : \gamma V_i \subset V_i, \operatorname{JT}(\gamma|_{V_{\mathcal{K}}/V_n}) \leq (n-k)^{k-1}\}.$$

Theorem (Gillespie-Griffin)

There is an S_n action in the (Borel-Moore) homology of $W_{\mu,k,n}$. Under some assumption on μ , the Frobenius character of this action equals $s_{\lambda}^{\perp}H_{\mu}(x;q)$, where $\lambda = (n-k)^{k-1}$ as above. We generalize the above results to the affine flag variety. We will work with the ring of power series $\mathbb{C}[[\epsilon]]$ and the field of Laurent series $\mathbb{C}((\epsilon))$.

A lattice $\Lambda \subset \mathbb{C}^{K}((\epsilon))$ is a free $\mathbb{C}[[\epsilon]]$ -submodule of rank K. The affine flag variety is the space of flags of lattices:

$$\{\Lambda_{\bullet}:\Lambda_1\supset\Lambda_2\supset\cdots\supset\Lambda_K\supset\epsilon\Lambda_1.\}$$

The affine flag variety is the union of affine Schubert cells labeled by the affine permutations in $\widetilde{S_{\kappa}}$.

Given $\gamma \in GL_{\mathcal{K}}((\epsilon))$, the affine Springer fiber Sp_{γ} is defined as the space of flags of lattices as above such that $\gamma \Lambda_i \subset \Lambda_i$.

回 とうほう きほう ほう ろくの

We define the space $Y_{n,k} = \operatorname{Sp}_{\gamma} \cap C$ where γ is a certain explicit operator (depending on n, k) and C is the union of certain affine Schubert cells,

Theorem (Gillespie-G.-Griffin)

a) The space $Y_{n,k}$ has an affine cell decomposition with cells in bijection with (K, k) rational parking functions.

b) The dimension of the cell is equal (up to a constant) to the dinv statistic of the parking function.

c) There is an S_K action in the Borel-Moore homology of $Y_{n,k}$, and the corresponding Frobenius character equals $E_{K,k} \cdot 1$.

For experts, the main difficulty here (and the reason to introduce C) is that K and k are not coprime (in fact, k divides K).

回トメミトメミト

3

Finally, we define the "affine Borho-Macpherson space" $BM_{n,k}$ as the space of partial flags of lattices

$$\{\Lambda_{\bullet}: \Lambda_1 \supset \Lambda_2 \supset \cdots \land_n \supset \Lambda_K \supset \epsilon \land_1.\}$$

such that $\gamma \Lambda_i \subset \Lambda_i$ and $JT(\gamma|_{\Lambda_n/\Lambda_K}) \leq (n-k)^{k-1}$. We define $X_{n,k} = BM_{n,k} \cap C'$ where C' is another union of affine Schubert cells.

Theorem (Gillespie-G.-Griffin)

There is an S_n action in the Borel-Moore homology of $X_{n,k}$, and the corresponding Frobenius character equals $\Delta'_{e_{k-1}}e_n$.

Appendix: from (K, k) parking functions to stacked parking functions

Here n = 5, k = 3, so K = k(n - k + 1) = 9. We split the labels into "big" (> n) and "small" ($\leq n$). Erase the big labels, the result is a labeled path in $k \times n$ rectangle. The stack remembers how many boxes we erased in each column.

Thank You!

• • = = • • = •

DQC